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1 H=BFINERR
1.1 f+4= Machine Learning?

Pl#%7>] (Machine Learning) S<Pr Eal 2 tHEALR G MBI 2], @A R HdE £ K
FOIH A R (B RO, ML S =K R

o IiE*~>] Supervised Learning: %> CLEAFAERI S AR, W5 2] — kg, R
T A PREEEE N2, WA R

o JEEE 2] Unsupervised Learning: “7 > il #2 o iy v+ 50 E AR BB A 54, R
X ARERBIE R, W R SRR

o SRMLEES: ARG, HERSREXSME, EPLEE AT B I
B 22 SRR R A AR, TR B 2 S AR 2 A AR R, A Il R A
TR IS Hh A7 AE 1) — Lo S5 A AR
L11 #BFFIFREENEE
AL 27 > il U e g L 7 A A 22 I [ ) S 2 OB, ML 2 ST I = R
YRR R
12 JLAEESIPRIEARGS
e Sample, example, pattern [ EZEG], FEA

* Features, predictor, independent variable 75 Z A0 (404 = 4 m &R KR, —K
)ﬂ €T; %ﬂ?

State of the nature, lables, pattern class #EHIZEA, —KH w, R

Training data: F# T4 (2, w;) FRINZGEIEE

Test data MRS

¢ Training error & Test error Il iz 2 FIK % 2


lenovo
高亮
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高亮

lenovo
高亮
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1.3 #HleEZxF a5

P E 11 A A S R ST R PR ST — R K7 ik, 3 LR TR
SV KT AT I LR
1.3.1 R1ERISH

IRPEASTL RS, HLas 7 SRR QTN J UM 2 RT7 2 $R IR TR AR )28 $2 2
RN e, 1R TS HACERL 02K, BEf 7 2807 sURHS R R
o MERBLRURIAME AR AR (ERER AR th ] R e AR, DO TR S TR A 5 S I i
AR Z A T30, AR B A Y i % X

o IRPERIRIMIARLE PRI, B DCHIAE TR SOk BB, b I 25t e R AR R AR £k
PEAAY

o ZHMBAMAESHARA: XAE TS HUE A EAN S8 m R, mHE2 4l
PRI 1) 25 B 4 AN

132 REZEDA

AL NS ST R 3], AEER S S R IR S — MREARIEAT HIU, SRR AT 42,
FEAN R R, TR 2 5] 52— RS EE SR I 25 5 2 ) F HEAT S5 SR T

14 #RBEMEHE Complexity

BEER I R B iR, HNZRRZ AW T, (HR2MKIRE S PR . B
RIAFAE— N R R AR . BN R FE b AT B & B L& (overfitting) B L.

A NIIRIE T3, 1 300 St Xt il A 105 49 A 1T X I R M & R AN
.

Definition 1.4.1 iz (Generalization) A& 77 : & = — AR AT K b I 3T 69 R ABH A ey TN AE 7,
BAV— A AT B2 AR 77 AR KARST
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1.5 1REEIRME
151 HABEEHRR
AT D = {(z1,11), (T2,92)s - -+ (T, Ym) } FARFERBAREI T y; TR 2, I EIHRIC,
FEPPAG A ST VRS, 7 O TN 45 AN B bR L AT L
152 $EREH
£/

—.I__
TR BB T (e) ERIE I e IVEDN HIIRHRAE DY 1, FERIEK e NRIIIHEE N 0

153 BIREBFEHE
TR ZR I B R A8 SON

B(f;D) = -3 W(f(w:) # 1) M
I 5 X8
ace(f5D) = S 1(f(w) = ) = 1= B(f; D) @

154 TEEMNELE

HYAEN | SR NIER | 851N =B
1EH5 TP FN
S FP TN

o BER P = ;- AR TINES RN IEB] b T 1E 6 i L)

o BAK R = I FRHT EB s L

1.6 No Free Lunch

TV A BIANTHIYLAS S TR AT B O N AR IS AR LT, OVl AR
R, RMHL LXRATTREN, B T F AN P AL A MB, IR A £E
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KA RILL B L, WA A B SE S L RIS B B, KR AT
AR, A R L R RS R B R, BRI, — N T T A

LB A 25 1 — R
T HRATAT DK R S AE B IX — AN, AT X FRbEAS ), H on B, A
BRETATHRBE, 4 P(h|D, \) FREE a fEVI%4E D Fro4 84 h OB, T £
FBRMFE LS ESL HFREE, WU C = X — D RBRNGEZ A FTaREA, NI

PR IR ZE AT LR IR N :
EMXalD, ) =) Y P()I(h(z) # f(x))P(h|D, \a) 3)

h XeC

R R AT L) SRR, JF HILSE H AR eR ST DGR AR TR ST 2 0 A 1 B e &, DRIAT RE
RO 21X, XA TREIY £ S AR, A

ZMMDﬁ ZZ})D x) # f(2))P(h| D, A,)

h XeC

- ZP x ZP h|D,\,) Zﬂ(h(x) # f(@))

zeC
- Y P thun 21X @)
z[C
= 21713 P(2) Y P(hD, A,)
zeC h
1S Pla)
zeC

PATRIIZ R — N, MR AT ER T8, HARE n AR e BHEE TN
RARZER—ER, WIEWANFEE —ESE SN g ERRWEAF MR, XWik& There is no
free lunch E#.

17 RE, REMRE

FENLES 22 2T TP AR B RS2 ST ORI T DUE R Z2 4R R i &, LA — R 22
R TRz, HnfE Rl E b, 207 2 ] LRI

E(f;D) = Z(f i) = i) ©)
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IS AR B B B, AT DL SR SRS T I 2
D)= [ (@) - 5V p(e)ds (6)
x~D

134375 % 22 (AT LAt — 28 (R 70 i o

1.7.1 J5% variance F{RZ bias
XF TR ER D Ay S B f, 2 ] B EE Ty -
f(z) =Ep(f(z;D)) 7)
RS T7 2/ E L, LA )7 Z R IE
var(z) = Ep[(f(z; D) - f(2))*] ®)
FAT AT PLE R BB A FUNE AN B SLARIE Z [BIANIRZE AR E (bias), R
bias*(z) = (f(z) —y)* ©)
VUJLE 5] U i) R 25 5 R ZE oy, JRATTAT R S8 5 R 22 73 i 9 -
E(f; D) = var(x) + bias®(z) + € (10)

H e =Ep[(yp — y)?] BARFEAFEA TS (noise)

1.8 EZAINAY bias #1 variance
A EHEELENTEN T, SIAMEREE KA, bias fl variance HIFRIANX AT LS N .

bias? = / (Ep(f(z, D)) — E(ylz))*pl(x)dz (11)

var = / Epl(f(z, D) — Ep(f(z, D)))*lp(z)dx (12)
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2 DIRtHRIEIL Bayes’ Theory

DU B e AR H e S 2 R, BAT I o R, ] w; FORATREMI 70 2R,
W P(w;lz) Fom o J&TIX—RAFIBEFR . DU ok SRR AE LR HE 2R T S oR A AR B A5 25
A5 o ey TR R AR P ORI B R A A S AR L.

21 DMHQXEES

RIEFAMRLAA, BATH

P(B|A)P(A)

P(AB) = P(AIB)P(B) = P(BIA)P(4) = P(AIB) = ——5

(13)
XA DU U g B R B AR, e

o P(A) ZICIMEZ (prior), 45 AR FEA 2R Ot BRI

o P(B|A) 2K (likelihood), /s A RAEMKMT, B IS

o P(A|B) ZE%MZ (posterior)

BUEFRAE A 25 T AMFIE wi, wa, ooy we, STTEHRE D PH—MFEA X, A

P(z|w;) P(w;)

Plojle) = =750

(14)

c

P(z) =) P(x|w;)P(w;) (15)

=1
DUt BT LU 0 S R GRS 1 DL 34 B BEAT R SR 00 S S S 3 3 A 1
DURAEAF 0 R IR I T REVE /b, BT R B A NS BRI T 5 IR OR AT 2 R
(1], WFr Optimal Bayes Decision Rule
DU R SRR T RE Rl B — LU RIS DL, LEUn eI E R AR A A, 5 2 LUK likeli-
hood AtHT A, 4 likelihood —#F K /NI i R 75 22 LU e I M <l aT B
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2.2 DIFEr AT Loss
221 FHXE

A LLE L—A loss function SRAli v DU 24 20 loss, FRATHE A |w; ) Rt EASE R )y
w; IREARTI R T o Bt K] loss( ] LAY risk), NPREEHEEE D HIIREA x 70288 o Pt
K264 XK (Condition Risk) 7] PAFR R A

C

R(aglz) = Mo |w;) Pwyla) (16)

j=1

TR T A AT BERT o AT R SR R BEAT B3, 15 2R S5 A XU
R= /R(aﬂx)p(x)dx 17)

ATRLIE Ay = Mag|w;) WRET—A 200 2K 008, JATR TR R(ou|z) BIRAN, HHEIFZ
JERIUA TR S fil qa=de x Zal [l RR,

2.2.2 0-1loss

— MR loss SE SGRARAE 7 RIEF Ry 0, HRAGI Ry 1, B

A5 o AR IR PR AR, B iTAT LS 3
R(oilz) = Moulwy) Plwila) = Plwilz) =1 — P(wi|z) (18)
j=1 ji
SEI AT AT B SR I8 BB L Pwilo) BOR/D, TR DUF A 2R, 61 75 B LL e
Palws) Pws) BN, DR TR KA A — 30 53 O 52

223 Coding A I

FEF eI — R A 2 Ja sl 1 e R G 2 IR, R4 58 RIAEZE b ST — AN i
B DU B 4 54, 7R E 9w 5 IR 7 B4 likelihood HITHE . posterior T, LA kS
R risk I, XAMEN EFE R T =AY, 1 262 2T likelihood F13£ T likehood
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AT =038, SRJE &SI posterior H24E T posterior #AT 708, 4 ATHE AP R H R HIE H
TR, ARG R risk, Hrh AR JLAGE:

o XAMENLFIREA AR B HUY, JFHA R LTS, BRAT BUe SRR AE K BT 5
RIE G AR AL, AT RS

o fEIHH likelihood I, ZETHREAISLER FJg AT/ 38N, BLSRFEABIPT & L], DRt As
FAREAS N A3 FRFAE A A BB ARER 22 SR R REA L, 92 likelihood

o {Eit % posterior BN %, P(w;) &M &AM LE, T P(x) 2 4HFEE
PEAE x MIFEAY likelihood FISGIGMER IR 2 A1, k2 Ul P(x) HSLEZAME, HA
R BAME, TRIZRHIE N —FEEE — A P(o)

o FETHELR AN BRI 2SR5 73 FAR Y 1 AR & PEAE 1 B m 0 R AE R, R Rl
PR AT BN SR 4 HE 23 SR IR 1Y

o FELHHL risk HORFIR, HLR AR PRI A4 — YRR risk

2.3 ¥ {41t Parameter Estimation

WA HES ERATRIL, 55 R T B P(o|w;) P(w;) BT BLEAT DU e 38, 10 P(w;)
Fe ] CAEARAE A TP SR, BUNIE =21 PR MR H label B, 7] LLARH % 5
HEW P(w;), BERET U5 P(z|w;), BRI w, P HBUREAE N x FIER

BATAT DL B D FEARRSS P(w|w;) BEATA T, A U110 32 25 V6 AR A AR
(Maximum-Likelihood) A1 U1 i Hi% 9 Fib o

2.3.1 IEZ4% 7% Normal Distribution

FATFTESEINZ — PR A i I AT AR SR RN R, BROA & TR VR A T 2
Bo AR A A, AR YR IXAS A B £ R R BN, RS A
X YRR B AT

p)?

@i 19)

P(x|p,,0'2) ZN(CE“J,,O'z) = Wexp{_
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HH B(x) = p,var(x) = o, MXT d 4efimE x, Z0EammSEoe d 4R E M E
A d x d IXTRRIE € b 7 Z 5605 2

P(alp, ) = Nalp, ) = expl— (@ — )2 — ) (20)

(2m) 2|33
232 HRKIRE

TR S B I ik 5 T B R R AR T, X — N8 m MR HE 4R
X, FATAT DM T2 B — MR 3T paara(x) AR, BULETRATEE A XA B SR R A 1 —
A Pmodet (X) RIS LEMRGEAL LS AOMER AR, AT AT ALY € — IS4 0, DRI A vl
PAZRIRN Pmodel (X, 0)» IZFE—2A, RKALIRIE AT LUSE SO

m

9ML = arg mgxpmodel(xa 9) = arg m“?x H pmodel(l‘(i)7 9) (21)
=1

{H2Z MR KREE G vH 5, BRI AT BAZS B A ek 25— 4
Oy, = arg max Z 10g Pmoder (2, 6) (22)
i=1

PRI Sy 28 4 AN BR B 1% argmax A2 eAs, PR RT BARR DAFEAR IR K/ mo 43 B A1 2%k
PR L0 5347 FH ISR AR AR AR B AN 1 U <

Ovr, = argmaxE,_,,  [10g Pmodel (2, 6)] (23)
— P AERE B K ALSRAN TE BV A R R R IR A B (e MU E L E IR S A FRE 2%
ZERES, MMHE 2 E %S RS KL 87 E &, 8.

-DKL (ﬁdata ’ |pmodel) = Ex—pdma [log ﬁdata (x) - log Pmodel ("17)] (24)

233 DMEEEMESHEIT
PAMBE 75 B AT 0 R AR BAEIE — O N AR NE R IR R A, WA

o 0, AR RO B TRATE SR SRR D N w; (TR Dy, F TS50, 110l
Ny
P(DiJ0) = [] Plaxl6:) (26)

zr€D;
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15

AR R ALK 125 1) 22 AR Rt 2 Lk A R B AR (B ARIE B K I8 1 A K PRI 1) 2 Kt A
MZER S HAGTHE, BOvE A EdE 4 bl st E TS REARRIBEARIE S T iHRcK. TN

T B IE R /NS RCTRR AT LR A A ek
1(0) =InP(D;|6) = > InP(a]6;)
zRr€D;
AT HARml 2 0 = argmax /(0)
Az C e 7RO T8 x RS AE, WA

1 1 Ty—1
In P(z|0;) = 1n(m eXP[—§(9Ck — )" X7 (2 — pa)])

=~ Din(2m) — S0 L (o - ) S )
WSS g >R T 5045 21
1n P(zx)0:)
O
PATTE BT B R BT BB, X SR (w5 £mT 15 21

ZZ} a:k—,ul—():>,ul— Zxk

zrED; Q:kEDT;
R R DAY 3, #EAT 3R ) AAS 3

OInP(zy0) 1 1 ;
T 54‘@( kil‘l’l)(xkilj/l)

PRI Ar DORAS 2 [l H{E

2= (e — )@ = > e —

rreED; zRr€D;

=S (@p — )

(27)

(28)

(29)

(30)

(31)

(32)

XL SRR B A T 2 H R 2 5 AT BUA AR likelihood # 3% 3G 5 likelihood.,

BE— BB posterior

234 XA

1 | # WRRITEE, UL E B A TIOR3 AT H B Ak
2 |def likelihood(x):

3
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LIKELIHOOD Different Class Feature Likelihood
INPUT: x, features of different class, C-By-N numpy array

C is the number of classes, N is the number of different feature

OUTPUT: 1, likelihood of each feature(from smallest feature to biggest feature)

given by each class, C-By-N numpy array

C, N = x.shape

1 = np.zeros((C, N))

# XEHATHHHHEANENREMN 2R TENRASFERBEEN S A EL, B UK &8 2K 5 B # A fo
# BT ERE| G R 2T R B9 4 A It ¥T DL

class_sum = np.sum(x, axis=1)
for i in range(C):
for j in range(N):

1[i, jl = x[i, j] / class_sum[i]

return 1

2.35 DIMERET

W RANERTE SR AR 2R (M) T 3%, 10 DL S0 1 U DU )R A F 58, X AIAE AR R AL
SR7E MLE YN TFRIZ 50— fixed value 1H & IR UK E /2RI AS & fEI 254
D fENE, WA

P(z|w;, D)P(w;, D)

P(wi|z, D) = " P(z|w;, D)P(w;, D) (33)

AT AR TR N |
P(x|w;, D;) P(w;)
P(w;|z,D) = .
(wi ) > P(z|w;, D;)P(w;) 0

24 #pZ&DIMHHT Naive Bayes

FER DU 70 R 2 IR AC AR, BEARIRA TR R P (xfw;) ¥ B x BT A e PR TR & A
AL, ASBA TR & BER (0 TS FE B B RA, bR R x A TR I (thmT LAy
TBURFE) & HAHBRSL, SRRt T d 4EMFEA © € D, DI A AR 1

P(w)P P(w) 1
Plafe) = ) DT Plaiko @)

i=1
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AU, X T A R P(x) A E, R AN D70 2R 0 H ARl 2
d

hp(z) = argmax P(w) [ | P(xi|w) (36)

ceY ;
=1

WZED 1, & D, KonH c AR RIES, WESERSERMR

_ D
D]

P(c) (37)

MFEBIRET S, UL D.., &3 D, B2 i ML o REARLURKSES,
FAFBER AT LG T

[ De.z|
D

P(z;|w) = (38)

Definition 2.4.1 43453714 E LaplasSmoothing: # A G4 &R, 77T A BT A 69 45 LR AR 16
FAEEAPHIL, HARIE NI TR B IEFFEATROBIERETFFNS, K
7T VAMB E BT A B9 4 A KB LA R 3 G 96y, B AN %% LR K ANMFLE (K A R B 69 4%
BE, AR EA K —AN) B EA AT A AL, SR R R AN X TR T

D |+1
P(%‘W) = ||D||+1 (39)
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3 % M[ElY3 Linear Regression

HI T e BN % 2 > P AR 55 F2 2R 20 AN B, 70 i i A ULk 8 2 2R T R BIL K A A 2
Bt — A2 (A BRI B RO, 1M (B AE 55 W2 f > real value

3.1 ZeMtEIRYE A B

T n EIFEAR © = (21, 20, ..., 2] B — RIVEMER I w = w1, wo, ..., w,] 15 f(x) =
wlae + b, EXANWEE VER N n+l 4568015 f(z) = wTae HP z = [Lz1,20,...,2,] T w =
by wi, way ooy wy], XFELLCRERE XML ING — 7, MIRATH B ARG R XA R EL f, i
X TN (25, v:), FAR DRI AT () = ysr FATERMHS RZ XA n+l
YE A& w

3.2 Zt[EYIARY loss eR E AN AR

LML WL loss B HUE SR /N1 7 1R % (MSE)
1 n

MSE =23 (= flww)? (40)
ol AR 255 AL (RSS), HIER Wi F: )
Tafa) = Z@/ — Flrow)? = (g - XTw) (g~ XT0) (1)
AT RSS E‘Ji%iiﬁﬁiﬁ%}ﬁﬁi
V. (a) = —2X(y—XTa)=0 (42)

DRI AT LAAS 2445 RSS 570> A 2 1 [0 U1 F) i 2
w=(XXT)"1Xy (43)

AT EGERER], B AR x 2 d < VHERIAE, BRI XA d xon ZER0RERE, Ty B2
nx 1AERAE, BT DUSAEAR n ANTRAES d MR, XXT 2 AR, KA, it
I RIERAE BT 2 A, HSSXABIRGFEAR, DU ESRRNZ nel EAE w, 7 ntl P2
B, HEDSHE el MEASBEFE ne1 DSHL BRSO % T AT RE 1 i 8 mT
DA77 R 22 B /M, BRI AT DA B8 51N IE AR TR i 146 HY 75 B 45 2R
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3.3 ZMEVENGITHRE

HRIEO T B SRS, iy = f(z,w) + e o e R—DBEHLEE A, A
N(0,0%) BIIEZ 704, LR Al OB AR R MG T w, %

1 1
P(y|a:,w,o) = \/%O' exp[_@(y - f(:c,w))z] (44)
BUE A DL )
L(Da(*)?(j) = Hp(yl|a:l,w,0) (45)
=1
BATHIR A HFRAZ R T
w=argmax L(D,w,0) = argmaxﬁ P(y;|x;, w, 0) (46)
=1
B AR 2 A )
UD,w,0) = —%‘2 (i — (@, w)?) + (o) 47)

i=1

BB N IEBA TR 2] 1 RSS, A A (K 25E AR IR AN L T4 L FR 02— A 1

3.4 I4[EY3 Ridge Regression

BAVR I B2 1 AR 2 5 B overfitting (IGO0, LLln—28 R w, B IR i,
Pt 2 09 1 0GBl A i) sl AR R, eI T U R I AR 22 . O TR R
size, 1EFRIKIHE AL BRI HIRMLIR, TATATLAGI LWL T %

n d
w* = arg min Z(yZ —wlz)? + A Z w]2 (48)
i=1 j=1

Rbr ERUR AR I H ST, WBRATERZ AT — 4 AT LUK 5 RO A 3

(y— XTw) ' (y — XTw) + Iw'w (49)
Xof SRR B2 AT LA 2
V(o) = —2X(y— XTa)+ 2w =0 (50)
D) F e 2 P AR A«
W= (XXT+ M) Xy (51)

XL [FH (Ridge Regression) (17775, oS4 A 2 mT LLE OHE M, FRATAT LR IEAERE
XXT 4+ NI FETHRR RS
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3.5 DIMErZ4E)YS

IAEIRATE B % S SEPrRE A h AT RE S LA, By = f(o,w) 4+ H e IR N(0,02)
HIIEZS 70 A1 AR DL g BE AT DAAS )
P(ylw, 2, 0) P(w]z,0)
P(y|z,0)
B posterior 1EEL T prior A likelihood 3R, B In(posterior) o< In(likelihood) x In(prior),
MAELPE RN @, RATE A 5E T likelihood #t /2

n

Pwly,z,0) = (52)

1

l(D7w7 U) - _ﬁ (yz - f(:EZ’w)z) + C(U) (53)
=1
R ATAT LU G R 7 e
_ N — 10T (A Nw
MM_NWMAI%X%meﬁ“p (54)
In(p()) = ~ 57w+ ¢ (55)

PRLEEAE DL S8 B0 T U [l R R =5 A0 A0 ) H AR ] ASE B T

A
20_2 Z(yl IZ) + C(U) 2wTw + c (56)

3.6 B4 [EYA Logistic Regression
3.6.1 EAXH

R A AE kRl — A sigmod bR BCRRE AL BISEAN XA L, PLHCSRASTHREA R T
TR REZ TS 2050 210 H . RATEH 1B sigmod BREE -

1
l1+e 7

Eetoes T 7p 2K e, AT LKA U 3 X I (-1,1) b, e an SR oE SEAE RO IEROW S TR A
JE IR, Rz RG], ATELRIR A

y=o(z) = (57)

1
14 e whe

1
P(y; = —1|z;,w) =1 —o(w'z;) = 11 e

P(y; = 1|z, w) = U(WT%') = (58)

(59)
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ErmfPA AT LG50
1

Py = l|z;,w) = U(yinfﬁi) = 1+ e viwtar (60)
3.62 S¥HIT
AT LAMCRALIRIERAG T S w, KA D FndReE, BRI 2T .
P(D) =[] o(yiw" )
el (61)
UP(D)) = Y In(o(yw z)) = = In(1+e"")

el el
CRLEE ARAT TR LK 32 48 [ VA BRI AR R AL SRVEZ At 1 11 loss BREIUE Sk

B(w) = In(1+ %" o) (62)

el
FF AR, AT O F1 1 T +1 -1 AR FRI K, 4 LRk
AT BLS

Bw)= > WA+e ™)+ Y In(l+e" ™)

iclny;=1 iclny;=0
= Y I A+ )+ Y In(l e )

ielNy; =1 ieINy; =0 (63)
:Zln(l—l-e‘”%")— Z e @i

icl ielny;=1
= 3yl In(1+ e

icl

AT LIIER B (w) & —A KT w MR g SR8 R S0 mrmt:, AT FEUEH —yw’z, +
In(1 4 ¢ 7)) AT w lMEH, TA1L gw) = —ywTz; + In(1 + e =) TSR — BBz

LA .
dg(w) x,ew T
aw = —YiZ; + 1 T €szi

RS B AN A O BATH XA — A 58

(64)

Theorem 3.6.1 3 F—A>n 8% = w, KA 38“’—; =1,
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D, BATTN TSR — R LR R BR R, AT RASE

0?g(w) a2ew’ @i
e 2 >
Ow? (14 ew=i)2 = 0 (65)

PRI FRATE W T 450K B BOZ — T R B, BRI AT ARTRR 2 1 B R 5 ok A5 He s L, BN

w* = arg min F(w) (66)

MR BT SRAGI —BBE, AT DS BT8R 5 T Bk i B R A S HOR AT 2

T,
Wi Ti

z,e
14 ewi@i

Wity1 = w; — n(7) Z(_yzl’z + )

iel
= w; + (i) Zl’z(% = ¥i) (©7)

14 e wi®i
=w; +n(H)X(o(w;, X) — y)

Horb o (x) 72 sigmod REL, T (i) & H CEFEMFIF, —FR—DHB/NECE, JFHM
A .
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4 REXFE# Perceptron

11 BAHRERE A
411 EX

RAWURE RS —Fp 0 RIEANE 7 IR, SN K 4EZe MR R P R, — A Sepil i
) (LB 73 A +1 A1 R3EoR), 7T LORHIZAS 70 e R A — A B Bk RO -

y = f(z) = sign(ws + ) (68)

KHERZE w Mo R EAPLR R SA, Kb w, TSEHb 2 M E (bias), XHH sign
PRECE MRV R BRI x A2 IR 0 IR B B 2 1, SR x 2 O I
16k bR BB L2 -1.

412 ETBFEAIIEHE

A LLIEREA AR BT N AN Kk 4ER 10 B A 02 k RS IE 2 (8] o 10 2, ALY B bRl 4k
BRI XA M S, AT S AW 23 Jai 2 RIS 1L ISR K 2
S B T IR B BT L ) s AR T T A B R AR 7y, IR — M w2 + b > 0, &
B — /N 0. PRI EEIHLIR 7 >0 H AR At MR AE A Bl = > B P I A5 R we + 0= 0

413 HETHETHIER

HSIBAIHL AT LA R —Fh AR5 (] S0 2 M 4s, SN2 K 922 k e B kAN
ik, A2 48 SR B 2 JEB UL (40 +1 RI-1) Bk, e 2 AR 2 oA — B
0, WL TRABE, MWETTREPRE, ML TTAEE —NEIE R f (), FUILRATR
MR 2 AT LA R T A TR
k
y=fO wia;—0) = flwz—0) (69)
1=1
et w; AURBEAPZTCIIBRE, s BT 5E SR w, T I SE S ) bias FIAH S
BRI OIS R, T LR sign BREL, AT UEH sigmod BRI, XA BR AT X
sign /& SLHUR R RS M EREL 1 sigmod AZIELEN, LK sign bR EUE 0 B H1I R 5%,
SRR R () a2k 2 R0 1 I 7 BRLARE o o 4 — 3
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4.2 REENHAREY R SK R
421 IMEKEH,

IRFINLAT I ZREE b ZRESR RN W] 73 1K), TSR AR B PR BE PP AL 225 FE AR 7 JE I s 1
Ul N TIER—DRTSH w M b ES MBI R, — AL B IR AR RS 21 w2
IS HIBRE 2, BIA

L= ||w|| Z yi(wzx; +b) (70)
z, €M
XM FoR B D PR K0 RS, BUECRIL A 45 2% B AT DASE SO
L(w,b) == > yi(wz; +b) (71)
r, €M

DRl T RATL A R 0 SR A AR B2 7 T

min L(w, b) = — Z yi(wx; +0) (72)

T, €M
422 ETHEHEE THEERIR AR
X459 R BOR 6 B TT LAAS 3«

- Z Yili (73)
x, €M

ViL(w,b) =— )y, (74)
;€M

LT ARSI e, fRE—ASRNAE, HEFFFIE e, (ERFAIRARE
1), REHTWMTEEITESE:

o TEYIZGE R I — R (i, ys)

o WNHLXABHE RN, MR YL vi(whas + br) <0, ABARE:
Wiet1 = Wy, + NYi; (75)
i1 = br + 1y (76)

o [BIEIZE —IDARGEIS, EBIIZREE P RATIR DRI A, G5RBER P12

43 RAHAEREE
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5 X #FEIE4H SVM 1 Kernel

51 X#HFRIZEMSIA

T AR, FATWIRAT AR E] — D& w, AT HEE D H R EMAEAR X,
W x ZIEF (H +1 2R) i oz > 0, WHR x £&46] (-1 £5R) #if v’z <0, HAEAD
URT DR A oo Bl R 34T 702K, FIBH AR S0 W o

FATRF] LR R RS, B D s RS x B 21 d 4EfAsla) b, dn R dr]mr A
R —A~ d 425 (8] B EF I (hyperplane)w”z + b = 0 ¥4 3X NI 20 R AN 5y, Hop—
ANERY BLEOREA x AR IEG], NI L REAS x A IE S, IS 3K A E R B AR 7 2K ) ek
ik 7, AR RIS ILIF A X Ak, T d 4E7S T B A x, H B T R B ] AR RO

_ lwTz + b 77)
|||
SONT BEIERHIEEAT 7325, AT h i, fEA
wiez, +b< -1y, = -1
(78)
wlha; +b>+1,y;, = +1

I HAFAE — SRR A AT BRSO, FRATHUARIZ L4815 55 5 BRI (K M FRON SCRF A& (sup-
port machine), k>3 RF A & 8T 1 HH 8 2 -

r= L (79)
ol
AT PO o R T B 8 2 A
y= o (80)
ol

XA EWPFRNNEIE (margin), N 7S 2 RBR A REH LT, FATNAZ XA RIS ] fe b
Ko PIBEEATEH B AR AT ALK [|w|? FR/ME, B
1
min ~ ||w][?
wb 2 (81)
sty (wle; +0) >1

XAPCAL ) RS BR_EaRE SERF R B LR AT 3(
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5.2 M#hIEE slack variable

TE SVM . [1] 78 3R fifé vp FR AT — R ask 386 8 B 4 b e /N ) — 2L TR) B A R A B0 42 1 TR B
TRAICALH) B bt & il XA f /NG B kAl . (BRI SRR A XA 0, BRI i
BRATHERI 452K, FUEIRATA] LLEI AFashAF & (slack variable), 510 F&—A~_F R 301
ZS 6], BIAT DB o) f A Ak -

L -
min o] +C;€i

(52
yiw i +0) >1-6N& >0
SRATAT DL LT 2054 5
&2>1-y(w'zi+0)N&E >0 (83)
= & = max{1 — y;(w z; +1),0} (84)
MR A0 FAF T A5 T+
min(> max(1 — y( e, +1),0) + 5 ) (85)

=0
FERME SVM RIS, AT OREX AN 27 A AT 58207 4 loss function, J&2F#B73FE N regu-

larizer

53 GMAEREG—M
FATTAT DAFE L 1 P 453 K bR IE A |
I(f) = max[L - . 0] (86)

FoA TR IR KA 512K B $ON hinge loss(RRBEBURERD), Ay B 3 RR 2 — AN KA T 47 2%
TR TURAT I ARAL AR AT A
min{) "I(f) + AR(f)} (87)
1=0
Horft R(F) £ TE N5,
S5 F R 9T PR, A 2 ] U B 05 A B T LB R T T

X, XAFET loss BEHIEFEAIR, LAERIHEFEH] loss 7t Square loss, TME M A FE 1
Logistic loss, X JLF loss &%) G 3516 45 4
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0-1loss HAT O A1 PAFME, FEDLAL B bn A0 R R 5l 75 8

Square loss (M1 AR LLBOR, B BE S i AR s 0 T~ AR 45 5%

Logistic loss 113250 L0122 {H 72 K I A7 AE

Hinge loss 7E— & 5L T2 0, MAEAE 0 B i LA 142

54 #% Kernel
5.4.1 #%7% Kernel Method

SCRFIR AL, FATEORME R B AREl2 — NI y = wle + b, FHIXASEP i Roxt
Hiade D BATEAER 0 H], X B T ARG, WCREAE AR BHZE AR H
Sk EIATZHTAE SVM LUK A 2GR R A BRI T Bt D L n] 731, Wi R SEhrls i
PRSI AR A AR, AT IZR € I INE AR I BRI mT 0

A% 7 30 T DA R AN 1), A% 5 125308 o g iR 46 2 1] I S 81— A BE e 4 R AE 2 ] o, i
REHESE D PHIFEAR x RPETT 70, MIUERAEA x A —A> d 4 fm) EEMS a 7 — A TE 4 2 Y
a5 (] DMBCE s 4E R IS I AR RE A2 X)), FH o), TUIRATT 75 22 SR AR A )RR 13 T

y=w'¢(x)+b (88)

5.4.2 1% E# Kernel Function

TAEAE AL T VR R IR 42 2 5 ZEH SE AN [ B R AR, H T 2 1) O 4 2 P] REAR s
FBRTCTTUE, BEILIATAT AR —ASSRAR ] 5% BR BOR AR AR, 345 P i) B AR R AE 4 ] £
RS T IR AR T 208 R K (24, ;) THE RIS R, X2 kernel trick

AR 1) B A AR R P B FRATT AT DA L, R0 ek B — e SR AR, I HIs SR 45 R ) JE 4
o, R

K(z;,x;) = K(zj,z;) >0 (89)

X5 ¥ |D] = m, K(z;,2;) FTLATERL m 4E B @A RE, 3% AN R B R N P AR A% A AR e
7% 6] (RKHS), & WA R 8 -

o LMtx: K(vi,x;)=alx;
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LA K (i, 2;) = (a] 2;)*

%ﬁﬁfi: K(.’E“x]) = exp(f%)

PR K(x,2;) = exp(—illwi;zj“)

Sigmod #%: K (z;,z;) = tanh(Bz! x; + 0)

it BIAZ D 1A% bR ELRATT AT AR Z PR 73 S8 85 P BIARZ MRy S0 i L, (H2 BARn i ide g
R ECERRM, BFHEA I EER.
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6 kNN: k-Nearest Neighbor 732

6.1 FAREZ
6.1.1 kNN RIEAREEE

KNN: k-Nearest Neighbor 5972 —F 7 K853k, HizO R RRYES € BIIZE, X1
i ZHH IS P R A, AENIZRE PR S R i k MR, IR k MEAS )
IrIG L, IR 2 1R E IR T OREAR R 3 2845 R . in okt k ANl R A
Ny(z) KER, M4 kNN #1738k A s 2 -

y = arg max Z I(y; = ¢) (90)

z; ENg (x)

KNN B2EA BB L Sem 2 R — AN RPEE RGNS T, BRGNS T, RGN, Ha
EARATREM R — RIS 17 Hfl” ISR A AFEERN, DOVEITA S s EE
VN, DRI A E MR RR R U . AN k M Tk, k=1 KINHR XA AR
Nl AR5

6.1.2 HEEERIEEF

PATTFEAE n JERRRAE 23 (] b B2 B AS s 2 (B BB S, T n 4R Al AN Al & 2y, 2
FATE IR .
Ly(wi,z;) = (O |2’ — 23 (1)
=1

FTR A SR p=2 FRHEFCAR LRSS, T p=1 KR GRS S, M p BT K
FORPIE, L SR Ao B B d A

6.1.3 k HIEIF

K PRIt 0] f5e 2 1 45 RAT ELIBOR RS2, K SRR AN ITE 22 S I AR ZE 2y, (R A
THRZE SR, FIMER XA AL E R R AEF UK. R kIR, WA THRZ 2R,
ERFENFIRERE R, “HSAA, HRUR k=N M2 w2 7% 8 IR 2 M1E A
iR, e TR REARER.
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6.2 kd &f: kNN K&

kd B — ot ko 4 22 ) H AR S8 AT A Al DAAE R L3R AT DA R AR T Bim Sk, 2
— RO, AR k 4R AR, SRR k 2 ) A B Y RO R R A K
gAY L2

6.2.1 kd RE9H)E

—BORVLRIE kd BT 2R S AR L, AR R E AR bR, %S R A
A ARSI AL B E R o AR, IR T BT AR AR B R T VR AE T, SRJE K K 4R A 43
TR AN X8, 2 JE AR PSR I DO L e — AN AR R R S R R R AT, EERIREA AR
RHARREAT TR 53, RS DX R B FEAS SR I A L

R TT K03 SR kd B

6.2.2 kd FiRiEZ

Xt RIS A ) kd BEREAT KRB 3R] LR 0 KRR Sl iR, AT e R
RIS, DLEaER ], W T4 m HAR R, MR S & 2 e R B85 AR mi
A5 (PR, kd B LA AR IR T T R — HURIE T, ASRFEAS ), SR IZI Y
o, BHRRT A, FABTER S B m AT =, 28 e A R] BEAE L AT 075 I
{21k

6.3 kNN SEPRURADIRLE

Fl T EBIHL AR5 ST URAE P B NN AR, H AR A KININ S — A ] 50 S0 1E A% 2 - 17
A, FEBARSS H SR F B R AR TR TV 5 B KNI, AR5 0 8 R 3k AT — & IIbRIE 2 5 KNIN
KRB E T, WTREZR R v St T L, feJa SERLK R TEAE R R AR H
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7  RER Decision Tree

7.1 EAREE

PRI (Decision Tree) S&Fr E &M I I £5 M RFEAT 73 F8 B BT, 7E 73 S r) il m]
IR A A PR AN [RVRFAE JoR AN ) JeR R B R AT 22 IR 0 R DR SRR 25 TR S AR AR 2R 1,
FAHETHAT T EFHIREN if-else i), WAIABIAARE XAEFHEZ BB LR
TR . PO DL R R A R BAT R (T, 0 SR TR B LERLAR

R A — RPN R A A, TR X R SR i, A BT oS — MR AR
BEJRIE, AT KRS R

711 RRHHREREES

RS T ZUCEE N SR A, SR R it /M R SR SR ST R SRR, 3 MR I FE
DR A O BT A = AP R o ST DR SRR R R Y AR R 2 A

o RN IV (1R T 0K S R SRR

o YT MFEAIE T A —REF X — 2 CEX A IRER#AT T 02K, RENIE
SLEE IR

o (EPRHM P ZEM—MRUHFFHEHF B MHEREITHA, X2 RER AR
KEE M7

o M T WAIAE, MERDSEREPARRIIEAT, PeSW A5 3270 ST & FIRE AR AT B
JE TR —251, 0= A5 1 2 R R bk =y
IR W FE 2] TR BIRTA 5, XA AR S #A B 228, RS 1) bias
SBR b2 0, BRI PEA —BRAN 1 3 ZEhR HE /2 variance, — R UGB ELE/ N SRAM 1Y) perfor-
mance 5 4f.

7.2 wMEFIERYIEER

T 0 0 3 R SRR ) 2 1 e A R AE R — R IR A AR R AT R 2y, L
MISEA RS 15 BS54
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721 {524 Entropy

J8 AT DLR SR FRBENLAL B A FAE M 1R X2 — N HRUE N O A IRMERD P(X = o)
pir MBABEHIAZ B X HIRH 2 SO A2 -

Z pilogp; € [0,logn] (92)

i TR S X MY, WER P(X = 2;,Y = y;) = pij» AL X ZGE RO T RIHLAZ R Y )
SRR T XGEFMT Y BISRAFRER AT AR T X HECA S

H(Y|X) = sz (VX =) (93)
4 FEPHC A T3 B0 R S PR RIR 1, AT S 53 BURR 9 2 0 R 2 6 2 P

722 (EE1E%E

5812 (information gain) F/x ELFEFFHE X HIEEMERFE Y NESHNTTHERER
DHFEE . FRIE A T T EIESE D 1EBH g(D, A) 2 XN D MAIER D 7F A 4w %A%
NI F AR 2, BN

9(D,A)=H(D) - H(D|A) (94)

2

5 R M EE R (mutual information), PIMEE RSN, JET5 51 28 FURFEIE R
T — RN T 4RI ZR5E D, tHEHEAMRHERE RIS, IFHBORDN, ER(E B o i
KIFHER AT 40T Z 1 532K .

BN BARER D, A K AAARRKSE C L S5 |Gkl = |D|, HAHHE A A n
AMAFBUE a; ARBFHAEFBUER D XI5 T n MAFMF4E D, TN FE Dy, HPRR
JB TN O FEA, HAKHESE D WAL AR RAN:

Gl G
= ZHD\ D) %

FAIE A X T 885 D LR ] LRS-

D N IDIRS DUl 1Dl
H(D|4) = X:w\ = 23 Z:ww 2 D] ©6)
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723 {52185

PUE B3 25 4 B SR R A A H I, 25 5 n) T3 B HUE B8 22 RRRIEAE S 20 bt
MG EWEEE, "TURIEX —WE, (553858 2 YarBdEE D R THRHE A 5 518
amAE SRR EE, Bl

724 Eeis#H

SJETREE 7 — PR VRO bR, X T SRR, AR ARG A K R AE S
Al FERIMBLIBER N pr AS A TBER I A [K 2 Je F5 50T LU SOk

K K
Gp) =Y m(l-p)=1-> pi (98)
k=1 k=1
MAEFEARES D, FEBFRETLLIE N
= 1Gd
GD)=1-Y_ <|D’“> (99)
k=1

7.3 REMBOESSERK
73.1 ID3 &

D3 Sk A% o2 AE RS 12519 s B A5 2 28 Information Gain SR AT RFIE 1%
B, O HLIs A g ST R SR

o MWIRGSFITAG, X T 70~ it ST AT R ORI E 1O A5 B o, LLF#(5 B3 2 B R
RAEAE ) o3 B — A AL 515

o EEIFTA RRFAE RS S0 28 HAR /N BCE B0 11 Rz B A TR A

732 C45E%

AN D3 FERRAL, (HZ RS S0 2 LEAR IR B IR, AR M AR DR AR, (HSE
B L DR S AR SEBLNE 12 — BRI GE vt 2 > B S rh e B2 FBOKR Y, BRL g D S 7 4 P
FIsE Sty , ML T HA AR — R PVERETHRAE coding I RE T BE 2 A BRI BRI -
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7.33 REMBIFIAX Pruning

AVE I A PORR bR B — R ET ARSI HANTOEE (DUREAN NEEMR, A~MR*
R TAM ), TEERE T — N RFhd (580, SR, SRMELES) 25, IHE
R IR R A e — BRI SRS i 7E 15— IR HH TR S B (O 2 B4 o gt A2 7=
BT — RENT M) MR EIbRE, THEARRHEA T4 EAr e, SR IR
X3 FEBR, Ul SR e A RFAE Ay 2 112 (R DR SR AR

HRIZFE—K, AE RN B R T R R AR i, RIIRA T2 AR R XA e
PEHEAT— 5 ML, Bt R BEAT B R, DRSS A BB AT A 8 /) e SRR 8 A ) 45 2K B e
HRM BRI BORHEM T IR & 6 Ny MFEA S, 8 TR0 k a4, 4
Mt RS AT LLR RN

}Mﬂ:—E:&ﬂ%ﬂﬁ (100)

T e SR PRI R R ORT DAE SR
[T IT| n

N,
CJT):E:Nﬁﬂﬂﬁ+aﬁw:—E:E:N%bgﬁ%+aﬂw (101)
t=1 t=1 k=1

M o &—NEOHENSEUE, HBORH o TS5 5% o8 A 7] - 58 fa AR, i
B/ AR AL R 353 5% bR R ) DA O 17 T LE BRSO, o = 0 IO R Se a1 AR B ) SR 0%
FZ, TR 2 REAE R AN R B e R UL BCRE P o FLSIIX it A 22 T 45 DR SRR 458 2 R 80— A 1
WY, ATRT DA 7R i ) R A B — A L

KHEBARAE R FIR:

Tip 7.3.1 %85 RN R0 AP 5 K099 £ 2 0, 3L R LA MAEAT 3 ALAL 32 88 2 A
SRR R R — 2 A,

IXWARGF AR, DR A R SR AL 2 R R v IR i b — S /R SR AORE A, 177 % HL o siz gk
1775398, HORERJE AL HA SR IR TR SRR AT A 5 52 0% (L i AE A S AR ISP i DR A AT T ) SR A2 B0
(1), T PA— € 2 I GREE B RREA 73 S B0 B (1) 5 A b

) TE A BT K (KR S ) bias A& 0, 1 variance £E4F FLAE K, A BIAR A S b £E I 2R bk
L RIRLF AN AR TR RN, BRI TRAT] 75 B30 i B {5 45 P SR mT DL BE 47 b 3 S
A, HA)iEil, SRR ABERIREMIRER variance
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Tip 7.3.2 HAEAZRA —MARKI @ Loy )3 dA2, HAT R HENT ANERE, W R T
BT MBI T RZATZ D, sAETHA, BT ARG E, TETE
BB TRk Ak,

74 CART &%
741 CARTHIENX

CART Hi% 72 Classification And Regression Tree(73- 255 [H1 JA44) (TR, A7 1 =
Al DAE BRI AR S RE AT U T-40 28, el LU TR

o CART Wi — NIV RFM AL —XH, RRNERIABEEERM, XFM
TV = 5 |AFHE, KA E R e ME IS, JFAEIX L 5T A E T AR
HOpAT, WHURAER AL E I 2 A T it B 2R PR 0 A

o CART 5l A: AN BT R P87 RGO T-AE R R SR o B S T R R, BRI
I A A P B0 At SR R PR I T4, SIS P 45 5 o i /M E D BT B (R b

7.4.2 [EVARBIE AR

[ D=ARE X 7 P A N 2 [B] B — N X 43 R HE B ROBRGT X &, B An it S A\ R 2 RIS 23 1 1
M NHRIE Ry, BRI RIRE R T RE B HUE ¢ AR B AT AR IR — A B2

M
fl@) =" cnl(x € Ry) (102)

W F NS AR B, BT DUHEJ7 3 2 R A T H N SR s i P2 22, FH P J7 3R 22 B/ MR
HE SRR A o B i B . X TFR—AN R0 Ry, IXAN R IO L 1 HA R 5 2 S
T AFEARR label HIFH1H

1
Cm = m Z Yi (103)

z;ER,
BRI 1 ) R LE - Gn e 0 i N S T AT A BRI R 2, (Gt S i) AR ERA 7 —#
Ja R T, EFERRHE SRR § AR 20 M E s 1E Y12 & (splitting
variable) FIY] 73 . € AN X 35k

Ri(j,s) = {z|z') < s} Ra(j,s) = {z|z?) > s} (104)
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SRJEFATAT LA [ P BVRRAE § AIARRAE j BEUE s SR B V 5 iR 2 i M YI 4 s, F-3R00
WA 2
min |min Z (yi —c1)* + Irlin Z (yi — c2)? (105)

G R ? 2i€Ri(j.s)
StF—AEER S, EmERRERT o, co FIMERME R, B3I i o Bux —
Y0 Bl N A RE T, Tiad e s O A AN A B R AR B R AR V) AR =, SRS AT DAAR
PEIXFE— A AR R T3 A X, SRR IR B FRRAE, S et nT DUAE
Jl— R A /N 3R [m] A B

743 SAERBIERK
CART #7250 FI 3L R 48 501 N B & A E ERI bR UE, N CART BRIAK B #B =2
T, K EE R R EAT BLRE Xk

G(D,A) = 22: 'D”G(D-) (106)
ER=d I

I W R S T AN A R R SR — e, RN I B JE S B e PR b e I HLAR R 2 A g
RN BP9 R, 35 AR R T R A R SR A 8 4 — S
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8 B3 Clustering

8.1 BRAEMELXEGE

RIS — MBS, RS € M EE 4R AR AR AE A ACLRE sl B, R i 2R
X R 2 T (FRIARNE, ML B label 1), [KHIHARRERE]EAYX
BEERAENEBNEERN, PUOVRZIHMEEE SOFRAME R LR “BEE” (A W
ANF R R RV R,  Handh A g s AN Z I O0 R — R X ERIREES, X T
AR E, BATHEE T RA R KI5 2R E LR “HiE”

8.1.1 #tHINEFEES

T RRIMEA LIRS D SiE AL S, BBA n MR, BDNFEARNA n NEME, B
AFEARRIEE AR LA KA m < n BFERE X REFoR, JEFERRE— IR — AR m
ANRFIE, F WLHIEE B E SO iRA

o BIRIRMBEBE R XA R, s OB R R B B

1

di; = (Z |z — xjk|p> (107)
k=1

Tip 8.1.1 FTRMESER T, L p=1 WA LBMIEH, p=2 HLAKKXIEH, p=co At
RVIE REH, FMTENLARMEZ G %L3TE

o i LT EORREASKERE X P ZEAERE RS S, T G U L v L PR e 3R AT
LA N

dij = [(2; — 2;)"S7 (2 — 2)] (108)

Tip 8.12 L5 42t e & # 8 T &S e M e 48 X0k, B Wby 2 4B A58 T X AP 40 X
PR ARG IES b, Dvh 35 b 9B 8 AR KL I AR oA B AR )

o FIEMAIRTZ: FH R SR L] A 2


m
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i LkiLkj
sij = (w5, ) k=1 (109)

_||90z'||2><||$j||2_ meo,m
Zxkizxkj
k=1 k=1

o MRARL: WSS RBORERFEARZ B AL, (BRI AR Goit sp bl 22 id X
ANHAE) HoE S

2

i (Thi — &) (wh; — 75)
rij = s — (110)
z; (Thi — 7i)? l; (zrj — ;)3

8.1.2 HKFFEBFIE

EX AT AR Z )5, FATERIMEE A, T8RS G, HHFINA
SRR A AT A SR A RO T LUK — SR B AR A E UK — 28 (AT AR, cluster), TIH WL
e 7

o B4 G HEEMA AR B A I H A T
o XNTHEE G PHIUERE DR, HAFES —MEAME R AT FE T
o XfT GHH—MERL, EAES AN S R B AR T
o XTHA G TR, [EEWASZRIMEERARE VI HrAERRFIEAET T
FATAT DL — S AR 20— 2K, Bt SRR B A
Tg = NlcNZGlx Gp = maxd,; (111)

[Fi] N SRS 22 1) 0 2t ) DAEAT 7 S, it 8 3R] BANU {8 4% (linkage), A LLAT 2 Ff
SETTA, PR EE Y, AKERES, Hho R EE B A Y BE B AR AR

JER RIS BN Z AP R IR G, FHEARG BZ R %, 2 AT
R (3] M B TRH _ERRE R E), BREFIEEREHE =DER, MAERTHEM
AR 3] — R B RR
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o 2 B EE AR
o ffiE B I AR
o HfE FIRAE LA

821 BEEH,

REREMIMAN n DA REAT RS, BJafd — NS Ira BRI A 2%
TR, FEPRINTE:

o XTF n MREAR IR, MBS mox n IR
o it n DR, FARAME PR
o GIFRMEEE RN, IRV, ik NErR

o THRBISA S TSN R R, WSRO 1 WM IR, SR A 2P

8.3 K-means B
831 EANLE

K-Means 3 (i K A RRK) & —METFARES O REEE, kK EKFEER
LERNIHRNKADTE, BIERRBET MK, Bl —PRERIEMEE FHXTH), PERE
Bk R AR B E T 2 N R EE)

X TEERIFEARES X, AR FRHIE 2 8 o FRHIE R ok R R, FRATA BB AR 9
k MAFRIRZES Gy, I Hip e - )

GinG; =0 |JG=X (112)

i=1
FILAH CORFTR XA — NI R A, il 7 R R gl B — A KA /R4 R, K
oy CRE—AREL A AR
C(zi) = Gy (113)

R — MREARRRARI SR, 1 K SEFRAE I GRS R R fie M5 2k e B0 5 2R
HF AR 7R3 C
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8.3.2 K-Means B4 loss BE#§

K-Means KR LR R B, JF H AP S B H R a0 ORI BRI T 75 A 1E u 6
NSRS

Z Z ||z — 2| |? (114)

I=1 C(i)=

RSB | K-Means 5% AR A AL A& — At LA 4 1) 7L -

C* =argminW(C) = argmmz Z || — 7|2 (115)

=1 C(i)=
8.3.3 K-Means EAMiN%E T2
MR T P 5 (45 2 R L, K-Means 803 I 2505 R 7T LLIX PR ik
1. HRERENLE K AMREALE ARG I K AR08, ARG T R PR

2. RFEAFEA T, HERE KRG, R EERERIEN O RERNEIERIZ
AR

3. B2 DHIEA R IG, AR EIET 22 BT B mUE B /NG Rl
AR IZR T, WAl iZE A T A R E

4. SRJEEIRNEE 2 S RFT K AN St S B H a2k, EE LR RERRI 4 RAFN
A, SR T K BMH BRI g
834 K-Means EEM4E5

1. KHERERE TR AW T5%, ARERERESE] & R, WG ok BRY
Wi SESR A A IR, BRI 2R b O RS S AEAE A S AR R KB 5]

2. ARG K 2 RA R RIRG R, — BRI R ER SRS K K S5
NEARAE, EAFEF I K NS, T E NN OE R



O 0 N N U s W N -

W W W W W W WRNN N DN DN DN NN NN P2 = = e e e el el
A QG B W NP, O VO NN U e W R, OV NN U e W N = o

8 & % CLUSTERING

8.3.5 k-Means {XFE 2}

41

P — ORI R A 505 2 i ge B R VLT3 i) ML SREIIEAL i) — Bt K-means B A& SEHLH)

AR, A NG R T g b

def kmeans(x, k):

KMEANS K-Means clustering algorithm

Input: x - data point features, n-by-p maxtirx.

k - the number of clusters

OUTPUT: idx - cluster label
centers - cluster centers, K-by-p matrix.
iteration_number - cluster centers of each iteration, (iter, k, p)

3D matrix.

non

# begin answer
def get_current_center(centers, k, x):
dist = np.zeros(k)
for j in range(k):
dist[j] = np.linalg.norm((centers[j] - x))
min_idx = np.argmin(dist)

return min_idx

def get_new_center(index, x, k):
count = 0
sum_x = np.zeros((1, x.shapel[1]))
for i in range(len(index)):
if index[i] ==
count += 1
sum_x += x[i]

return sum_x / count

N, p = x.shape

max_iter, iteration = 2, 0

idx = np.zeros(N, dtype=np.int32)
centers = np.zeros((k, p))

iteration_number = np.zeros((max_iter + 1, k, p))
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8 & % CLUSTERING

EHEE PO RENFQ

first_centers = np.random.randint(0, N, k)

# WK T F B center, KA

for i in range(k):

centers[i] = x[first_centers[i]]
iteration_number[0] = centers
while iteration < max_iter:

# e, BRERFEFOKBEAGFONES, KRGS

for i in range(N):

idx[i] = get_current_center(iteration_number[iteration], k, x[il)

for i in range(k):
res = get_new_center(idx, x, i)
centers[i] = res

iteration += 1

iteration_number[iteration] = centers

# end answer

return idx, centers, iteration_number

42




9 #4+ BOOSTING 5 ENSEMBLE 43

9 #&7 Boosting 5 Ensemble

91 HAEANE

ST ITEF SR 2 AR R A TR A M8, ARIEA R RS DR EAT I a
IR, B RAE — B LB M, 12 2 SR LRI A AR i) XK B 7 3 2%

9.1.1 SRA[EI55H% 3]

AT D 2 TR S AP 1 S o S N, 3 LIRS, AR MES
B BRAT S S0, 0 5] R R LB AL IR — 5, RS T ST Ry . R
O TE 2B A BB, T35 B 8 S 5 1 E 05 5

95 2 ST BT AU S ST, T LT T 2 ) S 2 5 3R 3 EL VI A
cost FEFE LT /b, [RIHRATA A T —AMBEE, RASE AT LU % A RS 02 S B2 i
TS, R AR 30 B ) T 8L T Ml B 90 2K

o (ELRYHIILE BRI EH, B BB, RATE E AR A SIS

B IR

o AL ANFIRI 02 a8 15 8 — DA R BB, 73 ZRRUR L dr it ml DA & LR AL, iX
Rt 2 A 2 A BE L R T FI L s 2 S YA B & ensemble method

9.1.2 ensemble B 4% HIUEEH

XM LR A PRHLES 2 2] T Combining Models, 844 B SR/ 5 2 AN A ]
¥ model H & 2| —EILFEITHMESR, WK M MR FIBCE R R, A2 TN R AT LIRS
PR

M
1
Ycom = M ;yz(m) (116)

A4 94t 2 ensemble method FYEE 1A 1k 5 AR BE L BN 73 S8 IO T R4 R Sp e 2 FRATTAT AR
BEHSRIAR AL h(x), AR MASAS R AR 2L 451 RS PRI A 2R (1 R 2 T B«
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Ecom = E((ycom — h(z Z yi(z) — h(z))?
(117)

— W ZE((% — h(z)?) = %EAV

AR ET ensemble 75, #EAL[H) variance Eﬁi?ﬂéﬂ%ﬂ’] apr PRI AR5 VA e T AR
TR, OB/ 1AL variance, AE AR 1) TR 45 5L S nfe e

9.2 WfEMZMREL: Bagging

FAVIAE C 2 0 TE B A5 7] DLER i TN 45 R ARSIk, I8 FRAT Iy ke A= ol 22 A5 1Y
BATHEWR? HIWHITTEA PRI, —F& Bagging, 2 Boosting
Bagging 2 it A [\ #8473 77 2RI ZR it 2 AME Y, & — el DAIFAT OB I 2507
I BRI D BT AR O -
* Bootstrap sampling: MEESE D FAERME TAHARK RN N KIZE, IFZkd—
ZINH % 2] 4% (Base Learner)

» Aggregating: RITYAL S IHENE, [EAEAE 7 SRR R voting SR, RIIESE AT REME
i, AR RN averaging, HUCF3%L

Bagging J7VETERE % 2] 35 2 59 7 5 ) MR R TH R AR W 4, X — st ] DABRAE, oA
Bagging J7EMARTUZ LN T — RINGE AR, )5 voting SREGKRFIZE R, HE2SEZ A
(YRS AR O [ I A 2 A BT

X B AR 2] AR T DL PR R R LM R B P N 2%, ] DUEFH SRS, RUOIRERRY 2
— ML R B GIRERIIEL 2SR, I H bias 9 /T variance 3E% &, A 1H ensemble )
75 AN AT DL AR R SR ) variance, 75 bias Al variance #ELEE /NIRRT Ffd Y e
FRHE N EL S 2] 25 1Y) Bagging B N REHNLFR#K (Random Forest), XANZFHILEIER, R
Z W7 RERLT AR

9.3 Boosting 5755 AdaBoost

Y Bagging /1% A Boosting 77122 — Mk AR B, Hp S L2 Ad-
aBoost, Xs&—MHATH] Ensemble vk, 83 T UIERAIINZR I 258 24 2 As T4 55
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Tr I, BRI I T A R e AR R U A A

9.3.1 AdaBoost EELE
1. K IZREE D 0 N AN NSRBI TG A E, — R T A REAR 2 (R &M S, Bl

(118)

1
D, = (wll»wl% s awlN) Wi = N

2. XPEHEHAT I MR IEAC, 2R m R IR I SR A AL E A 2 Dy, IR R —
NIGIREE Go(), RIGTHRR D RBHINGRIRZE:

ZP m (i) # yi) Zwm m(T3) # i) (119)
3. NG THE A AR I R AL
= %108 L= (120)

4. BTN INGERIBED A Doy = (Wins1,1, Wma1,2, - - - Wimgr,n ) FH Zy, MAEELTEAL
PRT, AR B R AR A PR 6 45 I T A R B AN AR A T 1, B2 BB R BN 1

— A4 ;
Wm41,i = exp(iaﬂéyi m(xZ))wm,z
N " 121)
Zm = Zexp(_aminm(zi))wm,i
i=1
5. B — N BN E R IITERIEH S, TERABE AR K525 e
M
x) = Z am G ()
= (122)
G(z) = sign(f = sign Zam m(
9.3.2 AdaBoost iREDH
AdaBoost fFfE— g7 LA
1 N
NZ m(@:) # i) < —Zexp —yif () =[] Zm (123)

m
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R F A0 R A, A

m=1 ml\;l o (124)
=[I vVi-42 <exp(=2]] )
m=1 m=1
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10 EM EZxMNSETE &R GMM

EM 51 475 & Expectation Maximization, & H T3 & BRETEMNMEERHITSH
ARG —FMIEREE, AR RS 4 R RRAE b vh e H(E 2 2 R TN 45 SR 11 A2
B, KA EARE, BAEMBEA T AT IO BT, AR E SRR, A
B AR B A R e S RN BE ELOR Y, PTRAA R AT EM 5. EM BEF 2 E MM
P EED IR

o EXIR: KRMSHUSTHERIIE

o MBER: MEAIARKANAR IR R AR, AR5 RS B 0 45 RTR S T —FisAUh &

10.1 EM EZEHHES
W — MR S TR AL 5 Z, B ATRATER A ISR Y X TR 2
SR ek i, SEBR B B AR AR T
L(0) =1log P(Y|0) =log > P(Y, Z|6)
zZ

(125)
=log Y P(Y|Z,0)P(Z)
A

MRS B A RN, R AN BE B B8 R A O UARVE AT S 50l 1h,  BEM SR Z g v i ik
R EXMTHSEAG T @, WA PR B R
10.1.1 EM EEA9M AN E K

— RV Y BRI AR B R BE, F Z REREA RN, YR Z BEAE ]
— IR NTEEEHE, WINEHE Y AR TE & E3E, EM S 1SR A 75 25000 i A7 4008 Y,
FaAr EE i Z, BRAMERS A P(Y, Z10), &0 Aa P(Z|Y,0), w5 rS400
10.1.2 Q &

FEEHIE X VR &2 log P(Y, Z10) R TES @ MMEE Y A4 i S 8fhit 0, TxT
RMMEAE Z 1A REZ 540 P(Z|Y,0) FIBAEERN Q RE, .

Q(0,6;) = Ezllog P(Y, Z|9)|Y,0;] (126)


Highlight
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10.1.3 EM B EKRRiTFE
RSBV S 0, 2 )5, 75 BT
1. BB B i YOEMRIIHESECN 6, WFESE i+1 XK E B3, HH Q ML

Q(8,0:) = Ezllog P(Y, Z|0)|Y, 6]

— S log P(Y, ZI0)P(Z1Y, ) (427
Z
2. M BBR: RIERR Q(0, 0;) TARALHT 6 1EAARUGEAN Al TH{E -
6;+1 = argmax Q(0, ;) (128)

3. EX E DRM M D IEREBGE 2 S H0sk

10.1.4 EM B ERAERUSUIEIERR

X NE (GiE ) BB, SENEAE, e ihE T, L
fift EM SHE A D B F .
102 SEPE&#EE GMM

ATV A B A R T I R 4 A L
P(yl0) = Za@(ywk (129)

H o ZoBEREL o(ylor), O = (ur, o) Fom — DA E LR A, Bl

1 (?Jk - Mk)2
e () (150

(ylOr) =

102.1 GMM W E S

BRSBTS HAE 0 = (a,, - ak, 04, ..., 0k), BATHEMIHEN ST ER
WEME SIS H, T GMM R AR E R, BATATPUXFER T BRI AN
AL o RIEFEEE kK AN A BRI ;X ANEHE I &5 528 2, (Hd R
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LRI B 5 k A B R R R ENE, IR EATTAT AH — AFEAC R~ KRR ) DM
DK E T3 k R, R R A R AEN 0 A1 1 PIAMEL.

RHEARE R — A/, WA A S HOLRR X w2, WA A O A R AE KA i
e oy 3 A R SR AU U AL, T AR EL G DA B A 1 DL, BEATLE 36— v 4
BB A B oy, RS S v (k= 1,2,.. ., k) PHBAE—AZ 1, FRIWHAR O

10.22 GMM HIKEFIS AT

EM Kfif GMM 5 ZH5e A N A EdE, FFhd — DR SRS, 2l
FEEEI N E DM M DR

o EDUR: R LA S, THE B k XU B Oma R g, R

0 = sl (131)
> apd(y;|0k)
k=1
o M DIR: RIEFEAD BT B — AT T BRI SH, MRA R IEIX e S H =4
N
Z:l%kyj
=" (132)
Vik
j=1
N
Z ”Aij(yJ - /~Lk)2
ol =1 (133)
Z Yik
j=1
N
2 ik
ay == (134)
k N
HX—# o —H KB E AR, FHATSHSHE
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11 Fmk7 9747 PCA

11.1 EARES

F 553 # (Principal component analysis, PCA) x&—Fh WA o B4 21 77, FIRAIE
RERIPE AR T ERTNONEIRERR LN KM T X T EMR TR

o X BB 2R TG 5 Y AR B Y A5 T A A

o FERT TR TR T — R, SR TFIXAS, ittt rik st TIRZ 411

TERE S AR B 34T 0 22 1520 20 B U AU AR 32 580 M, 76 R TRE A B bt AT 10 32 il o0
I RT R ONREAS 2 15053 43 BT
112 #HAXRERS DT

R 5 X m ERTREALAZ B x BEAT n OMSZEOWI, 152K mox n IR
FEFE X, IFH AT DAAS THX S REAS 1 B fE 7]

f:

S|

1121 HAXBGit=
¥ BTIREAR, Bhr Z 56 FE ] LR IR A

n

1
S =7 Z(mzk — Zi)(Tjn — Tj) (136)
k=1

MAEA I RAEFE R LS B R = [73]moxm

Tij = % (137)

1122 ERSHIENX
BATT LG A m 4EMBEHLAE R x B m 4EIBENLA & y 10— AN 2R AR e

y = (yly Y2, 7y7n) = AT'r - Z ;T (138)
=1



O 0 N N U s W N -

=
N = O

11 Z 4547 PCA

m
— T E
Yy = 0; T = Q5
Jj=1

1123 EWRSHSZITE
XTTRHAZE Y = (y1,¥2, - Um)» FHGITER:

1 n

_ T _

yZ:EE ai:cj:aia:
=1

var(y;) = of Sa;

cov(y;,y;) = aiTSozj

11.2.4 PCA WEMKRELLE

S FEAR M FE3E4T normalization:

i \/%
THEREAR I 7 Z R X XT 0 H AT REAEAE 1) 3 A

B R B d AR ALAE TR B AR AE 17 B w;

iﬁﬁ&%ﬁ%ﬁl@z W* = (U/l,'ll)Q7 . ,’U)d)

11.2.5 PCA {X#35cif

51

(139)

(140)

(141)

def PCA(data):

PCA Principal Component Analysis

Input:
data - Data numpy array. Each row vector of fea is a data point.
Output:
eigvector - Each column is an embedding function, for a new
data point (row vector) x, y = x*eigvector
will be the embedding result of x.

eigvalue - The sorted eigvalue of PCA eigen-problem.

nun
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11 Z 4547 PCA

# Hint: you may need to **normalize** the data before applying PCA
# begin answer

p, N = data.shape

normal_data = data - np.average(data, axis=1).reshape(p, 1)

conv = np.matmul (normal_data, normal_data.T) / N

eigen_values, eigen_vectors = np.linalg.eig(conv)

index = np.argsort(eigen_values)[:: -1]

eigen_values = eigen_values[index]

eigen_vectors = eigen_vectors[:, index]

# end answer

return eigen_vectors, eigen_values

52
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12 ZMF5 54 LDA

21051 73 M (Linear Disciminant Analysis) & — & diL (1) [ 4E 775, I H & — M rEm
¥ 21771, LDA EEARBEEZ, MT4E Mg, AT LBOER X SRR R 3 — 5%
B4 b, I BAETRRISEFEAR SR R 0] G i i AN R R M REAS R 3R R T eI B8, X R —
KRBT F kT ZIN SR — Sf BT RHE S B i 7328, ot T Ae b %, wT A
B FEIRBGE IR KB B %, FMRE S SO BRI e A8 T — 280 .

12.1 LDA [8IERRIE X

FATSRAT T =73 B LDA, AT BUE B 1A € SCAERARAL D b M X, s, B 20 901R
R IR A, BHER T ZRE R, R BE SO BIRHE R R P K EHL W
by BAPRBEA R R OEEL R 0l e M Wy, RSP EREA TA RAR
PO EIX R L L, AAPIRFEARRWII T ZR o' 5w

AT H B2 A BB R S AR B2 BB R T Re S i AR SRS AT REZ /. PRtk
AT LLLE RIS B2 M i 5 2R AT RE/N, - B> AR AT BLE Sk

min (w” Sow + w’ Tiw) (142)

171 [ A B ATT A5 B AN [F) SR PRI B FE A R A B IR T REIZ &, PRI RT AL SRt 2 ] R R R R
FRER, 5 —A B AR LRSS

max ||w” 1o — w? |3 (143)
KRR, BATATUAGS S B R, & SCHARBREL:

2

T
e = T[T~ ")
wT(ZO—I—El)w B wT(EO—I—El)w
2 T
H(Mo - NI)T‘UHQ [(Mo —m)" w} (o — p1)" w (144)
o wT (20+21)w o (,{)T(Zo+21)w
~ W (o — ) (o — )" w

wT (EO + El)w
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122 LDA WL 5KER
1221 [E)@EHEE
T ARSI R HAx, 3RATATEUE X
Definition 12.2.1 % R #C & 46 % (within-class scatter matrix), B &% 7RE—A £ A A8 58
BAZR
Sw=S0+%1= Y (z—po)(x—po)" + Y (&—m)@—m)" (145)

z€Xo reX,

Definition 12.2.2 % Ia] # & 4£ % (between-class scatter matrix), F k& 7R £ 7 A 49 & 49z
BALE
S = (po — p1) (1o — )™ (146)

SXFE— R L1 4 H A pR Host T LA ke

wT Syw
J= S"w (147)
TR — R SR N AR AL T =
12.2.2 ImART Rayleigh quotient
X+ n x n BFERE A, IR FE B!
T Ax
R(A,z) = — (148)

it O P X 3 ) o AR B ) — AR B R H R RS T A IO ORI AR, T R/ M 4
T A FB/NRFALAE, R
/\min S R<A7 ZC) S /\max (149)

AT DA RIS B H Sl FidRiE IR — 458, BATAYIR ofe = 1, XFE—RRIER& B H 114,
AL B AR e 00T LS R
f(z) = 2" Az + ANzT2 - 1) (150)
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SREBEEFF LT SET 0 nf AR5

ag(xx) =Azx— Xz =0—> Az =z (151)

XS AU A PRI R A 2 SO, X T RENE AR N 0 (0 x /2 A I R AL AR X
L RVRFAE I B, XA R o7 Az FEARAE RIS IR T SEAE R 2 A 10— RIVRFIEI &, Rl
PR BN R RAE A S A SR IRFIE R &, i/ MERE A e/ MRRHIE [

T SO R )R8 S«

T Ax
] SRR R AT LA A
TAz  iT(B 3AB %)i
R(ABz)= 222 =7 ( ) (153)

2TBx T3
[ = T — A T LA 33X A R S 15 KA A e /M 20 45 B2 AB~ 2 (R K R A A 5%
/IME .

12.2.3 LDA BIKf##
WARERTI RS HOVER , JRATTAT LLKISE LDA (SR AR X4 RE S 8,0 ® HEATHGEAE 20,
B K FRFAEARL T B () 5l 2 B KA, fe /IS PVRFAEABELNS B, Bl 2 e IME, RIS ] BAEAT 1 — 20 1
AT
w =5, (o — p1) (154)
[F RS LDA AT DLA DUk e S BER SR fdRs, IR ELAT DAERH, PS50 2 RIS . 3 2
Wi oA IF Ho 7 Z AR, LDA 7 DL BRI 70 2545 5 .

123 S5 T LDA
12.3.1 [EERRYE X

IX N 25 M DL 37 e 5 PR SR AHE S i W 0 A N LDA B, i SR AT A2 = 40 A1
AV e I B IL, T LAV PSS REAS 23 )3 AL B A O HL L 005 220 0, X ke

_%ié:

P(zly = c,0) = N(x|p.,X) ce€{0,1} (155)
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XEE—K, R T A, JFIOMER AR ] LR R A
P(zly =c,0)P(y =c,0)

Py =cl|z,0) =
W=t =5 Py = 0)Ply = c.0)
X T.exp [MCTZ_lx - %xTE_lx - ;MCTE*MC} (156)
=exp { P :r— —ply- ,uc—i—logwc] exp [—1$TE x]
X BEIRATTAT A A
=_1,Ty- 1
Ve = —5uL X e + log . 157)
50 =X .uc
TXAE— SR BRI J5 B MR 2l T LS Rl
eBCTw-i-%
P(?/:C|$>9>:W:3(77)c (158)
X H SRR — softmax BREKIIER, softmax B AT LLIE— AN AR b dEAL B — AN 1 1K
MG, T sigmoid BRBIE K E — N —TH B softmax BB
12.32 ZHETHIFFRIBR
WF 2R, AT DL AT IXFE AR T -
P . 0 eﬁfaﬁbh
(y - | Z, ) - 653‘1-{-’)’1 +fﬂgw+’yo (159)

— Singid ((51 - 60)T37 + (71 - 70))

- 1 4+ eBo=B1)Tz+(v0—71)

TXFER AT LK — 20 A 00N 1 = W 0 A e Ak i — A sigmoid BEIE A, AR Z AT 8, 1)
E X, FATE: . .

Y1~ Y = 2,u12 u1+2,u02 Yo + log (1 /o)

(160)

_% (11 — pi0)" 271 (g1 + po) + log (1 /o)

PRLE AT AT BASE

w= 01— Bo=%" (1 — po)
(161)

To =5 (M1 0) — (M1 — Ho 10g(7r1/7ro)
0 2(# + o) — (p M)(Nl_MO)Tz_l(NI_NO)
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SR SFRATT A AT LA E (XA A )
wzo = —(11 = 70) (162)

BRI, i B R T L3 5 A
P(y = 1|z,0) = sigmoid (w” (z — z)) (163)

FATA LI wT (2 — 20) BRGEFAE S AR A 2 PR T 2o MR FHREFEL w LI, 10
sigmoid BRHU X B S8 RBEAT — 02K, B RUREFIEM 0] XM A2k
PEA AT EIE R, R REA GBS — 2 HE b, ARG BRI 2N 0 s R R R
UL NI E SR

12.3.3 SEHITAER KL

AT AR B8 PR R ALIRE RN S5 — AR, FRATTAT LORE 122 il AL AA) 0 2 B0 AR R 0

log P(D | 6) = ZZH c)logm,

1=1 c=1

5>

c=1

> logN (z | p,, 2) (164)

iy =c

RS R DU BRI, B = 2, = 2 Yy 2o Se = & (2 —
A@@—mf7ﬁ%%E%?WiU%&%%Aﬁﬁo
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